
Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

71

Collections

9 Collections

9.1 Introduction

Recall that we have deined a collection as a type of container that is traversable, that is, a container that

allows access to all its elements. he process of accessing all the elements of a collection is also called

iteration. Iteration over a collection may be supported in several ways depending on the agent that

controls the iteration and where the iteration mechanism resides. In this chapter we examine iteration

design alternatives and discuss how collections and iteration work in Ruby. Based on this discussion, we

will decide how to support collection iteration in our container hierarchy and how to add collections

to the hierarchy.

9.2 Iteration Design Alternatives

here are two ways that iteration may be controlled.

Internal iteration—When a collection controls iteration over its elements, then iteration is said

to be internal. A client wishing to process each element of a collection packages the process

in some way (typically in a function or a block), and passes it to the collection, perhaps with

instruction about how iteration is to be done. he collection then applies the processing to each

of its elements. his mode of control makes it easier for the client to iterate over a collection,

but with less lexibility in dealing with issues that may arise during iteration.

External iteration—When a client controls iteration over a collection, the iteration is said

to be external. In this case, a collection must provide operations that allow an iteration to be

initialized, to obtain the current element from the collection, to move on to the next element

in the collection, and to determine when iteration is complete. his mode of control imposes

a burden on the client in return for more lexibility in dealing with the iteration.

In addition to issues of control, there are also alternatives for where the iteration mechanism resides.

In the language—An iteration mechanism may be built into a language. For example, Java,

Visual Basic, and Ruby have special looping control structures that provide means for external

iteration over collections. Ruby has a special control structure for yielding control to a block

passed to an operation that provides support for internal iteration.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

72

Collections

In the collection—An iteration mechanism may reside in a collection. In the case of a collection

with an external iteration mechanism, the collection must provide operations to initialize

iteration, return the current element, advance to the next element, and indicate when iteration

is complete. In the case of a collection with an internal iteration mechanism, the collection

must provide an operation that accepts a packaged process and applies it to each of its elements.

In an iterator object—An iteration mechanism may reside in a separate entity whose job is to

iterate over an associated collection. In this case the operations mentioned above to support

internal or external iteration are in the iterator object and the collection usually has an operation

to create iterators.

Combining these design alternatives gives six ways that iteration can be done: internal iteration residing

in the language, in the collection, or in an iterator object, and external iteration residing in the language,

in the collection, or in an iterator object. Each of these alternatives has advantages and disadvantages,

and various languages and systems have incorporated one or more of them. For example, most object-

oriented languages have external iteration residing in iterators (this is known as the Iterator design

pattern). Nowadays many languages provide external iteration in control structures, as mentioned above.

Ruby provides ive of the six alternatives! We will now consider the Iterator design pattern, and then

iteration in Ruby.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

73

Collections

9.3 The Iterator Design Pattern

A sotware design pattern is an accepted solution to a common design problem that is proposed as a

model for solving similar problems.

Sotware design pattern: A model proposed for imitation in solving a sotware design problem.

Design patterns occur at many levels of abstraction. For examples, a particular algorithm or data structure

is a low-level design pattern, and the overall structure of a very large program (such as a client-server

structure) is a high-level design pattern. he Iterator pattern is a mid-level design pattern that speciies

the composition and interactions of a few classes and interfaces.

he Iterator pattern consists of an Iterator class whose instances are created by an associated collection

and provided to clients. he Iterator instances house an external iteration mechanism. Although

Iterator class functionality can be packaged in various ways, Iterator classes must provide the following

functionality.

Initialization—Prepare the Iterator object to traverse its associated collection. his operation

will set the current element (if there is one).

Completion Test—Indicate whether traversal by this Iterator is complete.

Current Element Access—Provide the current collection element to the client. he precondition

for this operation is that iteration is not complete.

Current Element Advance—Make the next element in the collection the current element. his

operation has no efect once iteration is complete. However, iteration may become complete

when it is invoked—in other words, if the current item is the last, executing this operation

completes the iteration, and calling it again does nothing.

he class diagram in Figure 1 below presents the static structure of the Iterator pattern. he four operations

in the Iterator interface correspond to the four functions listed above. he iterator() operation in the

Collection interface creates and returns a new concrete iterator for the particular collection in which it

occurs; this is called a factory method because it manufactures a class instance.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

74

Collections

 Figure 1: The Iterator Pattern

he interfaces and classes in this pattern are templated with the type of the elements held in the collection.

he arrow from the ConcreteIterator to the ConcreteCollection indicates that the ConcreteIterator

must have some sort of reference to the collection with which it is associated so that it can access its elements.

A client uses an iterator by asking a ConcreteCollection for one by calling its iterator() operation. he

client can then rewind the iterator and use a while loop to access its elements. he pseudocode below

in Figure 2 illustrates how this is done.

c = ConcreteCollection.new

…

i = c.iterator

i.rewind

while !i.empty?

 element = i.current

 // process element

 i.next

end

Figure 2: Using an Iterator

Note that if the programmer decided to switch from one ConcreteCollection to another, only one line

of this code would have to be changed: the irst. Because of the use of interfaces, the code would still

work even though a diferent ConcreteIterator would be used to access the elements of the collection.

9.4 Iteration in Ruby

As mentioned, Ruby supports ive of the six alternatives for doing iteration: there is no support in Ruby

for external iteration residing in collections. his is probably because there are so many other ways to

iterate over collections that there is no need for this alternative. Lets now consider the ive diferent ways

of doing iteration in Ruby.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

75

Collections

Internal iteration supported by the language. A block of code may be passed as a special parameter

to any Ruby operation, and this operation may then yield control (along with data arguments)

to the block. his mechanism, which is not tied to collections but can be used anywhere in

the language, can be considered a special form of internal iteration with control residing in

the language itself. his is also the way that internal iterators are implemented for collections

deined by programmers.

External iteration provided by the language. Ruby has a for/in loop that can be used with any

collection. Each element of the collection is assigned in turn to a loop variable, and the body of

the loop can then access and process the elements of the collection through this loop variable.

Internal iteration in a collection. his is the preferred collection traversal mechanism in Ruby.

Enumerable is a special mixin module that provides over twenty internal iteration operations.

All built-in collections mix in this module (and user-deined collections should as well). he

internal iteration operations all accept parameterized blocks as the packaged process and apply

the block to each element of the collection.

as a

e
s

alna

oro

eal responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

as a

e
s

alna

oro

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work

International opportunities

�ree work placements

al Internationa

or�ree wo

alna

oro

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

76

Collections

Internal and external iterator objects. In Ruby, an enumerator is an entity whose job is to

iterate over a collection; in other words, an enumerator is an iterator object. Enumerators are

created from any object that implements the each() operation by calling to_enum() or

enum_for(). All enumerators mix in the Enumerable module, so they include all the

internal collection iterator operations. Hence they are internal iteration objects. Furthermore,

they also include operations for external iteration: rewind() initializes an enumerator in

preparation for iteration and next() fetches the next object in the iteration (thus combining

the actions of fetching the current element and advancing to the next element). If next()

is called ater iteration is complete, it raises a StopIteration exception, which is how

iteration is terminated. he loop control structure catches this exception and terminates

automatically, so explicitly handling exceptions is oten not necessary when using an enumerator

as an external iterator.

Although Ruby ofers so many alternative forms of iteration, it is clearly designed to favor internal

iteration. Usually, this is not a problem, but occasionally external iterators are needed to increase control

over iteration. Ironically, the external iteration mechanisms in Ruby do not provide much additional

lexibility. he for/in construct is quite rigid, and enumerators lack a non-exception based means

of determining iteration termination. We will enrich our container hierarchy by adding better external

iteration facilities.

9.5 Collections, Iterators, and Containers

here are many sorts of collections, including simple linear sequences (lists), unordered aggregates (sets),

and aggregates with keyed access (maps). here are not many operations common to this wide variety of

collections that should be included in the Collection interface. For example, although one must be able

to add elements to every collection, how elements are added varies. Adding an element to an unordered

collection simply involves the element added. Adding to a list requires specifying where the element is

to be added, and adding to a map requires that the access key be speciied.

Two operations do come to mind, however: we may ask of a collection whether it contains some element,

and we may compare collections to see whether they are equal. Although the Ruby Object class includes

equality operations, adding one to the Collection interface will force concrete collections to implement

it. We also add a collection containment query operation to the Collection interface.

In the spirit of Ruby, it seems wise to mix the Ruby Enumerable module into the Collection interface.

his provides a rich variety of internal iterators. Given the drawbacks of internal iteration, it might be

advisable to include external iterators based on the Iterator design pattern as well. Hence we include an

iterator() factory method in the Collection interface.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

77

Collections

Figure 3 shows the inal Collection interface and its place in the Container hierarchy, along with the

Ruby Enumerable mixin, which is indicated in UML using a dependency arrow.

 Figure 3: The Collection Interface in the Container Hierarchy

9.6 Summary and Conclusion

Collections are traversable containers and hence require some sort of iteration facility. here are many

alternative designs for such a facility. he Iterator design pattern, a way to use external iterator objects,

is a powerful possibility, but Ruby favors and supports internal iteration. We will incorporate both Ruby

internal iterators and external iterator objects from the Iterator design pattern in our Collection interface.

Collections should also include an equality operation that indicates whether two collections are the

same, along with a collection containment operation. Both of these operations appear in our Collection

interface.

9.7 Review Questions

1. What are the alternatives for controlling iteration?

2. Where might iteration mechanisms reside?

3. What are the six alternatives for designing collection iteration facilities?

4. What is a sotware design pattern?

5. What functions must an external Iterator object provide in the Iterator pattern?

6. Which of the six iteration design alternatives does Ruby not support?

7. What is the Enumerable module in Ruby?

8. What does the contains?() operation return when a Collection is empty?

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

78

Collections

9.8 Exercises

1. What is the point of an iterator when each element of a list can already be accessed one by

one using indices?

2. Explain why a Dispenser does not have an associated iterator.

3. Java has an iterators, but the Java Iterator interface does not have a rewind() operation.

Why not?

4. Would it be possible to have an Iterator interface with only a single operation? If so, how

could the four Iterator functions be realized?

5. How might external iterators residing in collections be added to Ruby?

6. Write a generic Ruby implementation of the Collection contains?() operation using

a) an internal collection iterator

b) an external iterator object

c) an internal iterator object

d) the for/in loop construct

7. What happens to an iterator (any iterator) when its associated collection changes during

iteration?

8. Consider the problem of checking whether two collections contain the same values. Can this

problem be solved using collection internal iterators? Can it be solved using iterator objects?

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

79

Collections

9.9 Review Question Answers

1. here are two alternatives for controlling iteration: the collection may control it (internal

iteration) or the client may control it (external iteration).

2. Iteration mechanisms can reside in three places: in the language (in the form of control

structures), in the collection (as a set of operations), or in a separate iterator object (with

certain operations).

3. he six alternatives for designing collection iteration facilities are generated by combining

control alternatives with residential alternatives, yielding the following six possibilities: (1)

internal control residing in the language, (2) external control residing in a language, (3)

internal control residing in the collection, (4) external control residing in the collection,

(5) internal control residing in an iterator object, (5) external control residing in an iterator

object.

4. A sotware pattern is model proposed for imitation in solving a sotware design problem. In

other words, a pattern is a way of solving a design or implementation problem that has been

found to be successful, and that can serve as a template for solving similar problems.

5. An Iterator must provide four functions: a way to initialize the Iterator object to prepare

to traverse its associated Collection, a way to fetch the current element of the Collection,

a way to advance to the next element of the Collection, and a way to indicate that all

elements have been accessed.

6. Ruby does not support external iteration residing in the collection.

7. he Enumerable module is used to mix in operations for internal iteration to other

classes. It is used to add internal iteration facilities to collections and to enumerators, which

are iterator objects.

8. If a Collection is empty, then it contains nothing so the contains?() operation returns false

no matter what its argument.

http://bookboon.com/

